“我制造的这种镍铁铬合金,虽然一样需要制造磁区来进行写入数据,但在制造磁区的同时,磁头尖端部分会产生一个热障区。”
“通过热障区来进行辅助磁头的磁区,通过对磁存储上的磁层介质进行加热,以减小介质矫顽力。”
“从而使得磁头能更快的对存储介质进行磁化,从而提升写入读取速度、以及最重要的稳定性。”
“这种利用热能来辅助磁头进行写入和读取数据的技术,被称为‘微电能热磁感应技术’。”
对于他的话,直播间里面绝大部分的观众并没有什么太大的感触。
毕竟他说的也只是一个比较模糊的概念,并没有将具体的提升数据和性能效应,观众也不知道这是一种什么样的技术。
但蹲守在直播间中专精此道的专家就不同了。
听到热障区能辅助数据写入,减少磁层介质矫顽力后,这些专家两眼顿时就瞪得老大,死死的盯着直播画面,生怕错过了任何细节。
这才是他们想听的、想看的东西!
特别是岛国某公司实验室的几个科研学者,在听到热障区和减少磁层介质矫顽力时,顿时都懵了,纷纷站了起来,互相对视了一样,眼神中和脸上满是不敢置信。
磁存储器发展到今天,其实已经陷入了一个瓶颈了。
这个瓶颈,指的是一块面积固定的磁盘上,能写入的数据量大小。
因为任何磁盘,只要是采用磁层来记录数据,必然会有遇到‘超顺磁效应’问题。
这是磁存储无法绕过去的障碍。
磁盘的盘片,其实就是通过在盘基上涂覆一层磁性材料制成的,原理非常简单。
但任何材料都是由原子组成的,而磁性材料的原子晶体颗粒大小,会直接影响盘片的磁记录密度。
这是因为磁盘上表示信息的小磁极,是由数百个磁性颗粒组成。
磁记录密度越高,对磁性材料的粒度要求就越细。
但随着磁性颗粒的缩小,表示数据的小磁极会变得越来越不稳定。
而且由于磁颗粒的不断变小,会使得硬盘磁层的稳定性变差。