语言一定是抽象的。数学是最具象的语言,文字次之,而艺术是最最抽象的语言。数学的边界是文字符号,文字符号的边界是艺术。
人们知道一幅画不可能把任何细节都表现出来,也没有必要性。画一只松鼠时要画出一个大尾巴,把细节留给看画的人进行自我填充,“细节留白”恰好是绘画艺术的艺术重点。文字语言和数学之间的差别也恰好存在“细节留白”的效果。信息受体的知识背景可以最巧妙的、情景化的为所留“留白”填上符合自身希望的补充。
数学比文字更加的精细,在信息传递中能够更加精准的表述和传递信息要素。但是,精准的同时也就不能给信息受体留出空白,没有留白就没有容错空间。信息受体学习的效率可以通过信息缺损度量,缺损度少这会促进新信息的吸收;而信息缺损太多,则会导致吸收信息时感到乏味和疲倦。给信息受体留白,并接受信息受体自我填充也是一种效率的提高方式,因此,文字语言恰好可以在信息缺失的状态下高效率地接受信息。
人们总是愿意用举例子的方式,将一件复杂的事情轻松、简单的描述清楚。不难发现,人们所举的例子都是信息受体显而易见的事实,这些方法都是充分的利用信息受体的知识背景,知识背景决定信息接受的效果。值得注意的是:比喻终究不是被比喻事件的本身,任何人都不应该迷失在比喻里。
艺术,就是表达的时候,利用给信息受体充分地而恰到好处地留白,以实现撩拨信息受体激素之目的。艺术是对数学语言和文字语言的简要提炼。
数学作为最具象的语言,就不能抽象吗?当然可以抽象,数学是否抽象取决于使用者。数学是一种语言工具,一种语言怎样使用才是最关键的,抽象的效果与工具有关,更与使用者有关。这如同艺术也可以具象是一样的,艺术的特点可以抽象,但这并不阻碍艺术也可以具象。
数学、语言、艺术都是语言,语言就是用来表达世界的工具。抽象和具象之间并没有明显的界限。抽象和具象并不是两个可以量化的计量参数。
在大约三十年之前,计算机科学还是数学的一个分支。现在,显然有很多人已经忽略了计算机科学与数学的关系。唯一认为与数学有关的,就是计算机的算法,算法,是计算机程序通过数学语言实现目的的方法。
数学是一种思维的方式,任何问题但凡有其它的表达方式,都可以用数学语言来表达。甚至有人把数学知识的积累,上升到数学修养的程度。
虽然,数学只是一种表达的工具,从现实世界抽象而得的理论,但是在理论抽象时太深入现实世界,对现实世界的迷惑都会具体反应到数学表达中。
举一个具体的例子。
对于人们熟知的微分、积分的问题,饱含一种自然的巧妙。如果改变一个角度去理解微积分的几何含义,并引申至物理含义,再反观其数学式,对驾驭这个工具的技巧或更有帮助。
在一条平面曲线中,任何一个点都可以作出一条切线,在微积分中又叫导数,切线在几何意义上是这一个点的趋势方向,在物理中是运动方向。一个点是没有长度的,所以这个点的座标投影区域没有面积。可如果要让这个面积存在,那么这个点就必须要有长度。这就有一个疑惑,从一条线中可以作出无数个点,但是点却没有长度,也就是说点不能构成一条线。但是,只要对这个点进行表达,一定具有空间的概念。因为,如何让没有维度的点存在于三维空间之中?