小,它们之间的相似度就越高。
文本相似度计算可以根据不同的分类标准进行分类。首先基于统计的方法分类,这种方法主要
关注文本中词语的出现频率和分布,通过统计信息来计算文本之间的相似度。常见的基于统计的方
法有余弦相似度、Jaccard 相似度等。其次是基于语义的方法分类,这种方法试图理解文本的含义
和上下文,通过比较文本的语义信息来计算相似度。常见的基于语义的方法有基于词向量的方法
(如 Word2Vec、GloVe 等)和基于主题模型的方法(如 LDA、PLSA 等)。最后是基于机器学习的方
法分类,这种方法利用机器学习算法来训练模型,通过模型来预测文本之间的相似度。常见的基于
机器学习的方法有支持向量机(SVM)、神经网络等。
目前,在国内外,文本相似度计算已经取得了丰富的成果。国内方面,清华大学等机构的研究
者提出了基于深度学习的文本相似度计算方法,利用神经网络模型来捕捉文本的深层语义信息,实
现了较高的相似度计算精度。江苏师范大学的研究者提出了利用《新华字典》构建向量空间来做中
文文本语义相似度分析的方法,该方法在中文文本相似度计算方面取得了显著的效果。放眼国外,
Google 的研究者提出了 Word2Vec 算法,该算法将词语表示为高维向量空间中的点,通过计算点之
间的距离来衡量词语之间的相似度。Word2Vec 算法在文本相似度计算领域具有广泛的影响。斯坦
福大学等机构的研究者提出了 BERT 模型,该模型通过大量的无监督学习来捕捉文本的上下文信
息,可以实现高精度的文本相似度计算。BERT 模型在多项自然语言处理任务中均取得了优异的表
现。
2.5 本章小结
本章主要介绍了本项目中使用的四种关键技术与模型。这些技术主要基于大型语言模型,并且
依赖于 RAG 技术的原理。介绍了知识抽取技术,它利用先进的自然语言处理技术从文本中提取有意
义的信息和知识,随后讨论了文本处理中所使用的 RAG 技术,该技术可以显著提高大型语言模型在
专业领域的性能,增强信息检索的准确性和效率。最后探讨了在文本比对过程中所需的相似度计算