这时候,a的妈妈叫a回家吃饭,他们的这个赌博小游戏不得不立刻结束。b很高兴: “那大家各自拿好各自的十块,回家吧。”
a却不高兴了:“我嬴了两场,如果再玩下去,那肯定是我先到三场。所以,我应该拿走全部的三分之二。
两人就吵了起来,谁也不服谁。
最终,a说: 这样吧,我认识天才数学家帕卡斯,他是我见过的最聪明的人,或许他能为我们来做个决断。
同意了。
他们去见了帕卡斯。
结果,帕卡斯家中正好有一位访客,同样是数学家,叫费尔马。
两人讨论了一番后觉得: “因为你们的游戏还没有结束,所以我们不能用当下的输嬴次数来决定分钱的比例,而应该假设游戏继续下去之后,谁获胜的概率大来分配你们的赌资。
a和b一想:“这很公平。”
于是,帕卡斯和费尔马开始埋首,算啊算啊算。
【帕卡斯和费尔马见面的这一天,就是概率学的开端。】
【当然,具体a和b的赌资到底是怎么分配的,今天我们就不详细讲了——具体,书上也没说呀。】
【只是,圆周率的数值在冥冥之中居然和概率学如此的吻合,也不得不说,这是一件非常不可思议的事情。】
【另外,十八世纪的天才数学家欧拉对圆周率也有所发现。】欧拉在做了很多研究之后,得出了欧拉公式。e(iπ)+1=0
【这个公式成为了数学中的一条经典公式,也被誉为“世界最美公式”。】
【不仅是因为它的形式很美,而且将三个基本的数学常量都联系在了一起,还因为它后续在电路分析、信号处理、量子力学等领域都有着很大的作用。】