第367页

举个简单的例子,π是不是超越数?

可以证明它的确是超越数。

欧拉常数e是不是超越数?

当然是,也可以证明!

那么eπ呢?

答案是:不知道。

听起来很简单的问题,却是世界级的难题!

就算张远这种数学大师,也没有办法判断eπ到底是不是超越数,人类的数学发展到现在,也就只能解决相当有限的题目。计算机即便能够将(eπ)计算到几千万亿位有效数字,但和无穷比起来,和零并没有太大的差别。

而文明与文明的交流,确实能够快速促进这些学科的发展。

不同文明之间的思维有很大程度的不同,有取长补短的地方,这种交流不是11那么简单的。

当然了,这些数学问题,就目前而言,很难影响到整个社会的生产力,顶多相当于顶级科学家们的自娱自乐。

精度要求最高的航天飞行器的轨道,圆周率精度也就15或者16位小数,关于圆周率到底是不是超越数,根本没有太大的关系。

10位小数就足以使地球周界准确到1英寸以内!30位小数便能使整个可见宇宙的四周准确到连最强大的显微镜都不能分辨的一个量!所以,关于这些知识,双方才会大大方方地拿出来相互交流,新文明高层也不禁止这种行为,反而隐隐有鼓励的意思。

但是,为何要判断解决看上去无关紧要的这些数学问题?

因为……

它就摆在那里!