第1249页

看着教室里的学生们渐渐进入了状态,陆舟知道自己这堂课差不多已经成功了一半。

黎曼猜想虽然是一个很复杂的问题,但想要理解它其实并没有一般人想象的那么困难,真正困难的是如何解决它……

顿了顿,陆舟继续说道。

“在解析数论中,人们通常研究函数π(x),并且用它来表示不超过x的素数的个数。研究素数的分布规律是解析数论的基本任务,而研究π(x)的性态,则是解析数论的中心问题。”

“关于π(x)的问题,高斯和勒让德都做过大量的数值计算,并且猜想当x趋向于无穷大时,π(x)~xlnx,这个猜想后来被证明,也就是我们所了解的素数定理。”

“欧几里得用初等方法证明了素数有无穷多个,而欧拉则引入了一个乘积公式,这些先行者都为分析研究素数问题提供了可能性,然而一直到19世纪50年代,人们都没有找到合适的方法去证明高斯提出的猜想,直到一位德国数学家,发表了一篇题为《论不超过一个给定值的素数的个数》的论文,才为对π(x)的研究开辟了一条新的道路。”

“很多人可能已经猜到了这位大牛是谁,是的,他就是我要说的黎曼,而他在这篇论文中引入的黎曼zeta函数,更是影响了未来的一个半世纪。”

说着陆舟转身面向黑板,在黑板上写下了一行算式。

【ζ(s)=Σ1ns】

环视了一眼鸦雀无声的教室,陆舟继续说道。

“就是这玩意儿……看上去不是很难,对吗?”

众学生:“……”

哪里不难了?!

“黎曼在论文中对自己提出的函数进行了进一步的猜想,认为ζ(s)全部的非显然零点均在临界直线上。事实证明,他的目光确实相当有远见,经过大量计算所得到的所有非显然零点均在临界直线上。然而遗憾的是,我们虽然知道它大概率是对的,但却没有办法证明它确实是正确的。”

“因此,我们常常能在黎曼猜想下得到一个非常漂亮的结果,但如果我们无法证明黎曼猜想成立,就无法证明我们的结果是正确的。”

“反过来也是一样,如果我们能证明黎曼猜想是正确的,那么上千条假设黎曼猜想成立而存在的数学猜想,都将荣升为定理!”