“路老师,直接说最后一题?”
“当然,迎合兴趣的教学是最好的。你就简单说说微积分吧,知道多少说多少,没关系,我来补充。五分钟,多了浪费时间。。”
补充?
你想多了吧。
路永华把粉笔给他,自己往教室后面去,“陈天,你含着要听得啊,过两天我提问你,看看你到底认不认真。”
同学们都捂嘴而笑。
讲台上的温晓光则拿着粉笔转身,板书工整,写下微积分三个字。
“关于微积分呢,其实高二的数学课程路老师也给我们介绍过,那就是导数的概念,”
他在黑板上画出一个数轴,在第一象限作出一个曲线。
“假如这个函数y=f(x)在这个区间内有定义,并且有两个点a、b。两点纵坐标的差比上横坐标的差ΔyΔx就是a点的导数,这个很简单。”
“我们如果把函数的增量Δy=f(x+Δx)–f(x)表示为Δy=aΔx+o(Δx)(其中a是不依赖于Δx的常数),便称o(Δx)是比Δx高阶的无穷小,那么称函数f(x)在点x是可微的,且aΔx称作函数在点x0相应于自变量增量Δx的微分,记作dy,即dy=aΔx。”
“这就是我们所说的微分,而积分你们可以理解为微分的逆运算,就是知道了函数的导数,反求原函数,在应用上,定积分作用不仅如此,它被大量应用于求和,通俗的说是求曲边三角形的面积,就像试卷的最后一道题。”
路永华站在后面看着边写边讲的温晓光频频点头,不错,不错,微分和积分就是这么回事儿。
对于他来说,这是不难的。
但对于这个阶段的同学们来说,还是有点难度的。
好多人都很懵,高中以后的数学都学这些玩意儿吗?